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This paper presents a new numerical method for solving the incompressible, un-
steady Navier–Stokes equations in vorticity–velocity formulation. The method is
applicable to spatial simulations of transitional and turbulent boundary layer flows.
It is based on a compact-difference discretization of the streamwise and wall-normal
derivatives in Cartesian coordinates. A Fourier collocation approach is used for the
spanwise derivatives. Important new features of the numerical method are the use
of nonequidistant differences in the wall-normal direction; the use of split-compact
differences in the streamwise direction; a new, fast iteration for a semi-implicit time
integration of the wall-normal diffusion terms; and an improvement of the buffer
domain technique to prevent reflections of waves at the outflow boundary. Results
of test calculations are presented to verify the improvements obtained by the use of
these new techniques.c© 2000 Academic Press

1. INTRODUCTION

The principal difficulty in obtaining numerical solutions to the incompressible Navier–
Stokes equations is the fact that there is no evolution equation for the pressurep. Rather, the
pressure serves as an instantaneous correction to the evolution equations for the velocities
such that the continuity equation (zero divergence of the velocity) is satisfied everywhere
in the flow field.

There are several distinct approaches to overcoming this difficulty. The first approach
is known as the artificial compressibility method [5]. It uses an artificial compressibility
parameterθ to couple the divergence of the velocity to a change of the pressure in pseudo-
time τ , thus turning the continuity equation into an evolution equation for the pressure.
Typically, the solution procedure consists of integrating this system of hyperbolic equations
in pseudotime until the divergence of the velocity has been reduced to the desired accuracy.
The chief difficulty here lies in devising an iteration scheme that converges reasonably
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quickly without requiring excessive amounts of memory [25, 29]. Although this approach
can be used to compute truly unsteady flows, it has mostly been applied to compute steady,
incompressible, turbulent (i.e., Reynolds-averaged) flows over complicated geometries.

The second approach is known as the pressure correction or fractional step method [6].
Over the past 10 years, this approach has become by far the most popular numerical method
for the solution of the incompressible Navier–Stokes equations. In this scheme, the integra-
tion over one timestep is split into a predictor step for the intermediate velocity that omits
the pressure, a Poisson equation for a pressure-like quantity, and a final corrector step for the
velocity to enforce conservation of mass. The details of the method vary between different
implementations. Typically, the diffusion terms (at least in the wall-normal direction, say
y) are integrated with an implicit scheme for numerical stability, while the nonlinear terms
are integrated with an explicit scheme for efficiency. A major difficulty with fractional step
methods is the specification of wall boundary conditions at the intermediate steps. Usually,
ad hoc wall boundary conditions are derived by extrapolation of the velocities and pressure
gradients from previous timesteps. While such an extrapolation is sufficient for numerical
stability, it introduces large splitting errors into the integration scheme [24]. This signif-
icantly reduces the timestep necessary for numerical accuracy, canceling a good part of
the advantage gained from the switch to an implicit time integration method. It is possible
to construct schemes that overcome this problem and actually use the correct boundary
conditions [14]. While these schemes avoid the large splitting errors of the conventional
fractional step methods, they are very memory intensive [17, 21].

The third approach avoids the calculation of the pressure altogether by taking the curl of
the momentum equations. This results in a set of evolution equations for the vorticityEω (the
curl of the velocity). These evolution equations are augmented by a set of elliptic equations
relating the vorticity either to the velocities or to a stream functionEψ . A key advantage of the
vorticity formulation is that, if properly implemented, the wall vorticity can be calculated
with the full spatial and temporal accuracy of the numerical scheme. This is in contrast
to the fractional step method, where the numerical accuracy can be substantially reduced
near the wall [13]. In many applications, the wall vorticity is a paramount quantity that
is essential for capturing the physics of viscous flows. In these cases, a vorticity method
would allow for higher numerical accuracy with a given spatial and temporal discretization.
Alternatively, it would allow a reduction of the number of gridpoints and timesteps to obtain
the desired accuracy.

Vorticity methods are particularly attractive in two dimensions, where the number of
variables can be reduced from three (u, v, p) to two (ω,ψ). In three dimensions, however, the
number of variables actually increases, from four (u, v, w, p) to six [(ωx, ωy, ωz, u, v, w)
or (ωx, ωy, ωz, ψx, ψy, ψz)]. Another important drawback of the vorticity formulation is
that there are no boundary conditions for the vorticity on a solid wall. This is inconsequential
for flows without solid boundaries (e.g., jets, wakes, free shear layers). It can be, however, a
serious impediment for calculations of boundary layer flows. One way around this problem,
at least for simple geometries, is to use a fully explicit method for the time integration. This
introduces another potential drawback in flows that require a very fine resolution in the wall-
normal direction, namely, a severe restriction of the timestep due to numerical instability.
For calculations of turbulent boundary layers, when the necessary spatial resolution near the
wall becomes very fine, the timestep limit due to numerical stability may be substantially
smaller than the timestep necessary for numerical accuracy. In these cases, an implicit
scheme would be more desirable. Recent higher-order accurate finite difference schemes
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for the vorticity formulation are given in [10] for implicit time integration, [15] for explicit
time integration, and [7–9] for compact differences.

The first researcher to successfully use the vorticity–velocity approach was Fasel (for
references see [10]). He investigated the early (two-dimensional) stages of boundary layer
transition. His method was second-order accurate in space and time, using finite differences
for the spatial derivatives and a fully implicit scheme for the time integration. The resulting
difference equations were solved with a direct method in the wall-normal (y) direction, with
iteration in the streamwise (x) direction. This scheme coupled the implicit integration of
the vorticity transport equation with the calculation of the velocities. The iteration loop of
the difference equations was combined with the iterative calculation of the wall vorticity.
At the outflow boundary, a radiation condition was imposed on the second derivative inx
of all variables. This condition allowed waves with one specified streamwise wavenumber
to pass through the outflow boundary without severe reflections.

The basic numerical method was extended to three dimensions in [10] to investigate the
later stages of transition in a flat-plate boundary layer. The numerical scheme of [10] used
fourth-order accurate finite differences inx andy and Fourier collocation in the spanwise
directionz. The time integration was still carried out by a fully implicit scheme, with the
radiation condition at the outflow boundary. In later studies, the implicit scheme was replaced
by a fully explicit scheme, and a buffer domain was introduced to suppress disturbances
before they could reach the outflow boundary [15].

The principal application of the current method is the direct numerical simulation of
transition and turbulence in wall-bounded shear flows. While the fundamental equations
are unchanged from those of [15], several new numerical techniques have been introduced
that lead to substantial improvement of accuracy and speed. These techniques include
nonequidistant differences in the wall-normal direction; split-compact differences in the
streamwise direction; a new, fast iteration for a semi-implicit time integration of the wall-
normal diffusion terms; and an improvement of the buffer domain technique to prevent
reflections of waves at the outflow boundary.

In Section 2, the governing equations are presented. In Section 3, the numerical model
is described in detail, including analyses of the new techniques listed above. In Section 4,
results of several test calculations are presented to demonstrate the accuracy and convergence
of the numerical method.

2. GOVERNING EQUATIONS

The governing equations are the incompressible, unsteady Navier–Stokes equations with
constant density and viscosity. They consist of three momentum equations for the veloc-
ity componentsu, v, w in the streamwise (x), normal (y), and spanwise (z) directions,
respectively,

∂Eu
∂t
= −(Eu · ∇) Eu+∇ p+ 1

Re
∇2Eu, (1)

and the continuity equation (conservation of mass)

∇ · Eu = 0. (2)

In these equations, the velocities are normalized by the free-stream velocityU∞. The spatial
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variablesx, y, z are normalized by a reference lengthL, and the timet is normalized by
U∞/L. The global Reynolds number is defined as Re=U∞L/ν.

We define the vorticity asEω=−∇ × Eu (i.e., the negative curl of the velocity),

ωx = ∂v

∂z
− ∂w
∂y
, ωy = ∂w

∂x
− ∂u

∂z
, ωz = ∂u

∂y
− ∂v
∂x
. (3)

Taking the curl of the momentum equations (1) eliminates the pressure gradient. Using the
fact that both the velocity and the vorticity vectors are solenoidal, one obtains three vorticity
transport equations for the streamwise(ωx), normal (ωy), and spanwise (ωz) components
of the vorticity:

∂ωx

∂t
= −∂a

∂y
+ ∂c

∂z
+ 1

Re
∇2ωx (4a)

∂ωy

∂t
= ∂a

∂x
− ∂b

∂z
+ 1

Re
∇2ωy (4b)

∂ωz

∂t
= − ∂c

∂x
+ ∂b

∂y
+ 1

Re
∇2ωz. (4c)

The nonlinear terms resulting from convection and vortex stretching are

a = v ωx − uωy (5a)

b = wωy − v ωz (5b)

c = uωz− wωx. (5c)

This formulation of the nonlinear terms follows the approach taken in [10]. It has the
advantage of minimizing the number of Fourier transforms required for a pseudospectral
computation of these terms.

From the definition of the vorticity, and again using the fact that both the velocity and the
vorticity vectors are solenoidal, one obtains three equations for the velocity components

∇2v = ∂ωx

∂z
− ∂ωz

∂x
(6a)

∂2w

∂x2
+ ∂

2w

∂z2
= ∂ωy

∂x
− ∂2v

∂y∂z
(6b)

∂2u

∂x2
+ ∂

2u

∂z2
= −∂ωy

∂z
− ∂2v

∂x∂y
. (6c)

When used together with an appropriate finite-difference discretization of thex, y deriva-
tives (see Section 3), this formulation of the velocity equations does not require the vorticity
valuesωx, ωz at the wall for the calculation of the right-hand sides of Eqs. (6a)–(6c). The
calculation of the wall vorticity will be discussed in Section 3.1.

The flow is assumed to be periodic in the spanwise directionz. In the calculations
presented here, the flow is also taken to be symmetric w.r.t.z= 0. Therefore, the flow field
is expanded in real Fourier cosine and sine series withK spanwise Fourier modes,

(u, v, ωz, b, c) =
K∑

k=0

(Uk,Vk, Äzk, Bk,Ck) cos(γkz) (7a)
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(w, ωx, ωy,a) =
K∑

k=1

(Wk, Äxk, Äyk, Ak) sin(γkz), (7b)

where the spanwise wavenumber is

γk = 2πk

λz
, (8)

andλz is the spanwise wavelength of the lowest spanwise Fourier mode. Substitution of
these expansions into the vorticity transport equations (4a), (4b), (4c) and the velocity
equations (6a), (6b), (6c) yields the governing equations in Fourier space

∂Äxk

∂t
= −∂Ak

∂y
− γkCk + 1

Re
∇2

kÄxk (9a)

∂Äyk

∂t
= ∂Ak

∂x
+ γk Bk + 1

Re
∇2

kÄyk (9b)

∂Äzk

∂t
= −∂Ck

∂x
+ ∂Bk

∂y
+ 1

Re
∇2

kÄzk (9c)

∂2Vk

∂x2
+ ∂

2Vk

∂y2
− γ 2

k Vk = γkÄxk − ∂Äzk

∂x
(10a)

∂2Wk

∂x2
− γ 2

k Wk = ∂Äyk

∂x
+ γk

∂Vk

∂y
(10b)

∂2Uk

∂x2
− γ 2

k Uk = −γkÄyk − ∂2Vk

∂x∂y
, (10c)

where the Laplacian operator∇2 is transformed into

∇2
k =

∂2

∂x2
+ ∂2

∂y2
− γ 2

k . (11)

The nonlinear termsAk, Bk,Ck of the vorticity transport equations are evaluated pseu-
dospectrally, using fast Fourier transforms [28] to convert from Fourier space (x, y, k) to
physical space (x, y, z) and back. To avoid aliasing errors, the values ofa, b, c in physical
space are calculated on 3/2K spanwise collocation points [23].

3. NUMERICAL MODEL

3.1. Boundary Conditions

The governing equations (9a)–(10c) are solved inside a rectangular integration domain
x0≤ x≤ xmax, 0≤ y≤ ymax, with periodicity in the spanwise directionz. The computational
domain is shown schematically in Fig. 1. The numerical method is used to simulate spa-
tially developing, unsteady wall-bounded shear flows. Thus, fluid enters the computational
domain at the inflow boundary atx= x0 and exits at the outflow boundary atx= xmax.
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FIG. 1. Sketch of computational domain.

Inflow boundary conditions.At the inflow boundary atx= x0, all velocity and vorticity
components are specified. In addition, allx derivatives needed for the compact-difference
approximations of the governing equations are also specified. Imposing derivatives at the
boundaries may appear to be an overspecification of the problem. However, apart from solid
walls and boundaries “at infinity,” any computational boundary is necessarily a cut through
the physical flow field. Consequently, the numerical boundary conditions specified at such
a boundary should take into account the physics of the flow. The issue of proper boundary
conditions for computational fluid dynamics has been hotly debated among fluid mechan-
ics scholars, particularly in the context of simulations of transitional and turbulent flows.
Bertolotti [4] argued that realizable boundary conditions for the Navier–Stokes equations
should be a cut (e.g., atx= x0) of a flow field that is itself a solution of the Navier–Stokes
equations. Morkovin [22] called for environmentally realizable disturbances, i.e., for bound-
ary conditions that can be causally linked to disturbances that occur in nature. At the heart
of the matter lies a discrepancy between boundary conditions that are permissible in ob-
taining a mathematically well-posed problem and boundary conditions that are “physically
meaningful.” On the one hand, one may impose mathematically proper inflow boundary
conditions that lead to a unique and numerically stable solution that cannot be physically
realized in any experiment. An example of this type of boundary condition are the inflow
conditions specified in certain numerical simulations of transient growth of disturbances in
boundary layers [12]. On the other hand, if a flow is known to be a physically meaningful so-
lution of the Navier–Stokes equation, then the derivatives of the relevant variables (velocity,
vorticity) are also known. Thus, one could reasonably expect that the consistent specifica-
tion of additional derivatives at the boundaries should not cause numerical problems. As an
example, the parabolized stability equations (PSE) require inflow boundary conditions that
specify, in fact, the dependent variables and their first two streamwise derivatives [3].

There is yet another point to consider when a disturbance at the inflow boundary leads
to a transient in the flowfield: If reflected at the outflow boundary, such a transient can
cause waves to be trapped inside the computational domain. At the very least, these waves
will corrupt the solution for a long time; at worst, they might cause the numerical solution
to grow without bounds. This underlines the need for a suitable damping region near the
outflow boundary.

In the unsteady calculations presented in Section 4, the steady part of the flow at the
inflow boundary is taken as the solution of the Blasius boundary layer equations; hence,
all derivatives are known and can be specified in a consistent manner. Moreover, since the
calculations are usually started with the Blasius solution as the initial condition, the flow
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at the inflow boundary is also consistent with the initial flow field. In these calculations,
time-harmonic Tollmien–Schlichting waves are specified at the inflow boundary. Since
these waves are valid solutions of the Navier–Stokes equations (or of some appropriate
approximation, such as PSE) all derivatives can be consistently specified. However, if such
a periodic solution is suddently imposed as an inflow boundary condition for an otherwise
steady Blasius boundary layer, there will be an initial transient adjustment of the flow, until
periodicity is attained. While this transient adjustment is a valid solution of the Navier–
Stokes equation, it is unphysical, because it cannot be realized in an experiment. Thus, in
this case, only the periodic results, after the initial transient, can be considered physically
meaningful, since they can be reproduced in an experiment.

Wall boundary conditions. At the wall aty= 0, no-slip conditions are imposed onUk

andWk, while Vk can be arbitrarily specified to model suction or blowing through the wall.
In addition to prescribingVk, ∂Vk/∂y= 0 is imposed at the wall to ensure conservation of
mass. This follows from the continuity equation (2).

A crucial aspect of the vorticity–velocity formulation is the fact that there are no proper
boundary conditions for the vorticity; i.e., the vorticity values at the wall cannot be arbitrarily
specified or computed from the vorticity transport equations (4a), (4b), (4c). Rather, they
should be computed from the velocity fields to maintain consistency and ensure overall
conservation of mass and zero-divergence of the vorticity field. The following relations are
used to evaluate the vorticity at the wally= 0:

∂2Äxk

∂x2
− γ 2

kÄxk = −∂
2Äyk

∂x∂y
− γk

(
∂2Vk

∂x2
+ ∂

2Vk

∂y2
− γ 2

k Vk

)
(12a)

Äyk = 0 (12b)

∂Äzk

∂x
= γkÄxk −

(
∂2Vk

∂x2
+ ∂

2Vk

∂y2
− γ 2

k Vk

)
. (12c)

Equation (12a) is obtained by taking thex-derivative of the divergence of the vortic-
ity ∂/∂x∇ · Eω and eliminating the spanwise vorticity component via thez-derivative of
Eq. (10a). Equation (12b) follows from the definition of the normal vorticity (3) together
with the no-slip boundary conditions for the velocities at the wall. Given the normal velocity
Vk and the normal vorticityÄyk, their derivatives can be computed at the wally= 0. The
streamwise vorticityÄxk is then computed by solving Eq. (12a). OnceÄxk is known,Äzk

is computed by integration of (12c), starting at the inflow boundary.

Free-stream boundary conditions.At the free-stream boundary aty= ymax the flow is
assumed to be irrotational. This assumption is usually satisfied to machine precision in
numerical calculations. Thus, all vorticity components and their derivatives are set to zero.
A Robin boundary condition is specified for the disturbance velocityVk,

∂Vk

∂y

∣∣∣∣
ymax

= −αM Vk. (13)

This condition imposes exponential decayVk∝ exp(−αM y) of disturbances at the free
stream. In the case of a Tollmien–Schlichting (TS)-wave, this exponential decay follows
from linear stability theory, whereαM is the wavenumber of the TS-wave. For sufficiently
largeymax the solution is quite insensitive to the value ofαM .
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Outflow boundary conditions.In Eq. (10c) for the streamwise velocityUk, a Neumann
boundary condition is used based on the continuity equation (2) to ensure global conservation
of mass:

∂Uk

∂x
= −∂Vk

∂y
− γkWk. (14)

In all other equations, the second derivatives inx are set to zero at the outflow boundary.

3.2. x-Derivatives

In the streamwise directionx the grid points are equally spaced fromi = 1 at the inflow
at x= x0 to i =m1 at the outflow atx= xmax. Hence,x(i )= x0+ (i − 1)1x. Inside, from
i = 2 to i =m1− 1, all x-derivatives are approximated with fourth-order compact differ-
ences, except for the derivative of the nonlinear terms, as discussed below.

x-Derivatives of nonlinear terms.The streamwise derivatives∂Ak/∂x and∂Ck/∂x in
the vorticity transport equations (9b) and (9c) are approximated by split compact differences,

1

6
((2− wc) f ′i−1+ 4 f ′i + wc f ′i+1)

= 1

61x
(−(5− 2wc) fi−1+ 4(1− wc) fi + (1+ 2wc) fi+1)

×
[
−(1− wc)

1

36

∂4 f

∂x4
(1x)3+ wc

1

180

∂5 f

∂x5
(1x)4+ · · ·

]
, (15)

1

6
(wc f ′i−1+ 4 f ′i + (2− wc) f ′i+1)

= 1

61x
(−(1+ 2wc) fi−1− 4(1− wc) fi + (5− 2wc) fi+1)

×
[
+(1− wc)

1

36

∂4 f

∂x4
(1x)3+ wc

1

180

∂5 f

∂x5
(1x)4+ · · ·

]
, (16)

where the subscripti is the index inx direction and wc is a weighting factor between
0 (fully biased differences) and 1 (central compact differences). At consecutive substeps
of the four-stage Runge–Kutta scheme (Fig. 2), the numerical scheme alternates between
upwind-biased differences (Eq. (15)) and downwind-biased differences (Eq. (16)). For
example, when upwind-biased differences are used to computef ′0, f ′i i , downwind-biased
differences are used to computef ′i , f ′i i i . Since the equations are nonlinear and coupled, the
order of the biasing itself is reversed at every other time step to avoid any undesired overall
biasing.

When the four-stage classical explicit Runge–Kutta scheme is used for the time integra-
tion, the biasing factor wc is set to a suitable value between 0 and 1. When any other scheme
is used for the time integration, the biasing factor is set to wc= 1; i.e., the derivatives are
approximated by central compact differences.

The average of the two difference formulae (15) and (16) is the usual central compact
difference formula for the first derivative. However, when used in this split form, they
provide a much better approximation than the usual central difference formula.

First, note that the leading order terms of the truncation error of the two formulae are
equal in magnitude and opposite in sign. Since they are used at consecutive substeps of the
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FIG. 2. Amplification f (t +1t)/ f (t) after one Runge–Kutta step, plotted overρ1t . (×) first order;(u)
second order;(+) third order;(e) fourth order; (—) exact solution.

Runge–Kutta scheme, one can write the leading term of the truncation error as

−(1− wc)
1

36

∂4 f (t)

∂x4
(1x)3+ (1− wc)

1

36

∂4 f (t +1t)

∂x4
(1x)3

=−(1− wc)
1

36

∂4 f (t)

∂x4
(1x)3+ (1− wc)

1

36

∂4 f (t)

∂x4
(1x)3

+ (1− wc)
1

36

∂5 f (t)

∂x4∂t
(1x)3(1t)+O((1x)3(1t)2)

≈ (1− wc)
1

36

∂5 f (t)

∂x4∂t
(1x)3(1t). (17)

Hence, the method is still formally fourth-order accurate. A further understanding of this
method can be gained by analyzing its dispersion relation. Consider the model equation

∂ f

∂t
+U

∂ f

∂x
= 0 (18)

with periodic boundary conditions inx. One can then apply a Fourier transform inx to
obtain

d f̂

dt
+ iαU f̂ = 0, (19)

where i=√−1 andα is the streamwise wavenumber. The solution of this equation after
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one time step1t is

f̂ (t +1t)

f̂ (t)
= e−iαU1t ≡ e−iω1t , (20)

whereω is the circular frequency.
The dispersion relation of the exact solution is

ω

α
= U, (21)

whereα andω are real numbers. Note that all waves have the same phase speed and that
they are neither amplified nor damped. Also, the group velocity of the exact solution

cg = dω

dα
= U (22)

is independent of the wavenumber.
When Eq. (18) is integrated numerically, i.e., with finite differences inx and a Runge–

Kutta method int , the solution will be different. Instead of Eq. (20), we expect a solution
of the form

f̂ (t +1t)

f̂ (t)
= e−iᾱU1t ≡ e−iω̄1t . (23)

The dispersion relation of the numerical scheme can be written as

ω̄(α,CFL)1t

CFL
= α1x, (24)

where

CFL= U1t

1x
(25)

is the Courant–Friedrichs–Levy number.
The modified frequency ¯ω is now generally complex and depends nonlinearly on the

wavenumber and the CFL number. A positive imaginary part ¯ωi corresponds to exponential
damping of waves, in contrast to the properties of the exact solution. A negative imaginary
partω̄i corresponds to exponential growth, i.e., to numerical instability.

The weighting factor wc in Eqs. (15) and (16) can be adjusted to provide “optimal”
damping of numerical errors in the sense that grid-mesh oscillations with a wavenumber
α=π/1x are completely eliminated. For a given CFL number, this “optimum” value of
wc can be found from

wc =
CFL− 1

8

√
24−√192

CFL
. (26)

This relation holds so long as the values of CFL and wc are within the stability limits of
the scheme. The stability boundary CFLmax vs wc is plotted in Fig. 3. For a given biasing
factor wc, CFL numbers above the curve will lead to numerical instability. Note that stronger
biasing, i.e., lower wc, will reduce the allowable timestep for a given spatial step.

In Fig. 4 the normalized imaginary part of the modified frequency, ¯ωi1t/CFL, is plotted
vs the normalized wavenumber,α1x, for several fourth-order accurate schemes: standard
five-point central differences, compact central differences, compact split differences with
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FIG. 3. Stability boundary CFLmax vs weighting factor wc of the fourth-order Runge–Kutta scheme with
split-biased compact differences. The numerical scheme is stable for parameter combinations (CFL, wc) below
the curve CFLmax.

FIG. 4. Normalized imaginary part of modified frequency ¯ωi1t/CFL, plotted vs normalized wavenumber
α1x. Time integration with the fourth-order Runge–Kutta scheme, spatial differentiation with the following
fourth-order finite-difference schemes:(e) standard central;(+) compact central;(u) weighted compact split;
(×) compact split; (—) exact solution.
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FIG. 5. Detail of normalized imaginary part of modified frequency ¯ωi1t/CFL, plotted vs normalized
wavenumberα1x. Time integration with the fourth-order Runge–Kutta scheme, spatial differentiation with the fol-
lowing fourth-order finite-difference schemes:(e) standard central;(+) compact central;(u) weighted compact
split; (×) compact split; (—) exact solution.

wc= 0, and weighted compact split differences with wc= 0.2. In each case, the fourth-
order Runge–Kutta scheme is used for time integration. The CFL number in this example is
CFL= 0.5, and the optimal weighting factor according to Eq. (26) is wc= 0.2. Indeed, the
two curves with split compact differences show strong damping of waves with wavenumbers
α1x> 2, i.e., of waves with a resolution of fewer than three points per wavelength.

Figure 5 shows a more detailed view of the previous graph near the ordinate axis. Ap-
parently, the split compact differences cause stronger damping of waves than the central
differences. With a biasing factor of wc= 0.2, a wave with wavenumberα1x=π/2, i.e.,
with four grid points per wavelength and 8 time steps per period, loses 2.4% of its amplitude
over each period. However, at a finer resolution with a wavenumberα1x= 1 (six points per
wavelength, 12 steps per period), a wave loses less than 0.3% of its amplitude per period.
Most importantly, these damping losses can be made arbitrarily small by reducing the CFL
number, i.e., by reducing the time step1t . Note also that the central difference formulae
do not cause any damping at the highest wavenumbers.

The normalized real part of the modified frequency, ¯ωr1t/CFL, is plotted in Fig. 6.
With standard central differences, the numerical solution is seen to depart from the correct
solution for wavenumbersα1x> 1. It reaches a maximum atα1x= 1.82 and returns to
zero for higher wavenumbers. This indicates that waves with a resolution of fewer than
six points per wavelength have the wrong phase speed; they lag the correct solution. More
importantly, the group velocity of these underresolved waves reaches zero atα1x= 1.82.
This means that any numerical error at this wavenumber will not propagate at all. Worst of all,
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FIG. 6. Normalized real part of modified frequency ¯ωr1t/CFL, plotted vs normalized wavenumberα1x.
Time integration with the fourth-order Runge–Kutta scheme, spatial differentiation with the following fourth-order
finite-difference schemes:(e) standard central;(+) compact central;(u) weighted compact split;(×) compact
split; (—) exact solution.

the group velocity of the least resolved waves is negative; i.e., short-scale numerical errors
will actually propagate upstream, with the shortest possible waves, grid-mesh oscillation
with α1x=π , having the absolute largest (negative) group velocity. As shown in Fig. 5,
these spurious waves are not damped at all. Since these properties are inherent in the spatial
finite difference operator, only an increase in the number of spatial grid points can improve
the accuracy of the solution. Thus, increasing the resolution of a physically meaningful
wave from four gird points per wavelength to eight grid points per wavelength will clearly
improve its accuracy. However, it will not affect any short scale numerical errors that may
be caused by roundoff.

Matters are not much better for the central compact differences. On the positive side, the
departure from the correct solution and the threshold of zero group velocity occur at higher
wavenumbers, atα1x> 1.5 andα1x= 2.07, respectively. On the negative side, the group
velocity of the shortest waves has a much larger (negative) value than in the case of central
differences. Again, these waves are not damped.

In contrast, the split compact differences reproduce at least the correct sign of the group
velocity; i.e., they do not cause upstream propagation of numerical errors. And with the
“optimal” biasing factor of wc= 0.2, the phase and group velocities of all waves except
for grid-mesh oscillations are very close to the correct values. Also, recall that in this case
grid-mesh oscillations are completely damped.

In summary, the use of split compact differences can yield enormous improvements in
accuracy over conventional compact (and standard) differences for short waves, i.e., for
waves with 6 gridpoints per wavelength or less. On the other hand, there is no appreciable
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difference between the three methods (standard, compact, split-compact) for long waves
with 10 or more gridpoints per wavelength, for a given CFL number. Since the computational
effort for all three methods is about equal, the improved short-wave resolution comes at no
extra cost.

3.3. y-Derivatives

In the wall-normal directiony an exponential stretching is used to cluster grid points near
the wall [1, Eq. 5-216]:

y( j ) = ymax

(β + 1)− (β − 1)
(
β + 1
β − 1

)1−( j−1)/(my−1)(
β + 1
β − 1

)1−( j−1)/(my−1) + 1
. (27)

Here j is the index of the grid points in they direction; i.e., j = 1 is at the wall (y= 0)
and j =my is at the free stream (y= ymax), while β is a parameter to control the cluster-
ing of grid points.β→ 1+ clusters all points at the wall,β→∞ distributes points on an
equidistant grid. It is important to note that the grid stretching used here is not done by a
coordinate transformation. Rather, the finite-difference approximations for the derivatives
with respect toy are constructed for a nonequidistant grid. While this approach is tedious,
it can yield higher accuracy than the traditional method of grid stretching by a coordinate
transformation. Intuitively, this can be seen from the fact that, when a coordinate transfor-
mation is used, only one parameter (the metric) can be adjusted in a given finite-difference
formula, while the technique used in this work allows the adjustment of all coefficients in
the formula. For higher-order formulae with many coefficients, this should give a substantial
improvement. This approach has been successfully used in aeroacoustics [11].

For example, the first (f ′) and second (f ′′) derivatives in they-direction at a gridpointj
away from the boundaries are given by

afdy f ′i−1+ bfdy f ′i + cfdy f ′i+1 = ardyfi−1+ brdy fi + crdy fi+1, (28)

where

afdy= r 3(r + 1)

2
, dfdy= r (r + 1)3

2
, cfdy= r (r + 1)

2
(29a)

ardy= −r 3(r + 2)

1 j
, brdy= (r − 1)(r + 1)3

1 j
, crdy= (2r + 1)

1 j
, (29b)

and

afd2yf ′′j−1+ dfd2y f ′′j + cfd2y f ′′j+1 = ard2yf j−1+ brd2yf j + brd2yf j+1, (30)

where

afd2y=−r (r 2− r − 1)

12
, bfd2y= (r + 1)(r 2+ 3r + 1)

12
, cfd2y= r 2+ r − 1

12
(31a)

ard2y= r

(1 j )2
, brd2y=− r + 1

(1 j )2
, crd2y= 1

(1 j )2
. (31b)

In these equations1 j = yj − yj−1, andr = (yj+1− yj )/1 j .
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To illustrate the benefits of specially constructed finite-difference approximations, con-
sider the function

f (y) = cos

(
10

y

ymax

)
. (32)

At y= 0, the first derivative isd f/dy= 0. Typical grid parameters for the calculations in
this work areymax= 0.15 andmy= 80. Given the function values on the grid points, one
can numerically calculate the derivative using the finite-difference formula

f ′1 = hrdy1 f1+ hrdy2 f2+ hrdy3 f3+ hrdy4 f4+ hrdy5 f5+ hrdy6 f6, (33)

where

hrdy1 = −
h2h3h4h5+ h1h3h4h5+ h1h2h4h5+ h1h2h3h5+ h1h2h3h4

h1h2h3h4h5
(34a)

hrdy2 =
h2h3h4h5

h1(h2− h1)(h3− h1)(h4− h1)(h5− h1)
(34b)

hrdy3 = −
h1h3h4h5

h2(h2− h1)(h3− h2)(h4− h2)(h5− h2)
(34c)

hrdy4 =
h1h2h4h5

h3(h3− h1)(h3− h2)(h4− h3)(h5− h3)
(34d)

hrdy5 = −
h1h2h3h5

h4(h4− h1)(h4− h2)(h4− h3)(h5− h4)
(34e)

hrdy6 =
h1h2h3h4

h5(h5− h1)(h5− h2)(h5− h3)(h5− h4)
(34f)

andh j = yj+1− y1. In the limiting caseyj+1− yj =1y= const., Eq. (33) reduces to

f ′1 =
1

601y
(−137f1+ 300f2− 300f3+ 200f4− 75 f5+ 12 f6)

[
−1

6

∂6 f

∂y6
(1y)5+ · · ·

]
.

(35)

Alternatively, one could use Eq. (27) to define a coordinate transformation from the
physical coordinatey to a mapped coordinateη, where

η = j − 1

my − 1
(36)

such that the grid is equidistant in the mapped coordinate system. Here,1η= 1/(my− 1)=
0.012658. The derivative can then be calculated as

d f

dy
= dη

dy

d f

dη
, (37)

where the transformation metric is given by

dη

dy
= 2β

ymax
(
β2− (1− y

ymax

)2)
(log(β + 1)− log(β − 1))

(38)
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FIG. 7. Error of the numerical derivatived/dy of f = cos(10y/ymax) at the wally= 0 with standard differ-
ences, plotted vs stretching parameterβ. Calculation with 80 grid points.(+) d f/dy finite-difference derived for
stretched grid;(e) d f/dy coordinate transformation with finite difference for equidistant grid; (—) leading term
of truncation error for equidistant grid.

and the finite-difference formula (35) can be used to calculate the derivative, with1y
replaced by1η.

The results are plotted in Fig. 7. The first curve shows the numerical derivative computed
from Eq. (33), plotted over the stretching parameterβ. The second curve shows the numer-
ical derivative computed according to Eq. (37) with the finite-difference coefficients from
Eq. (35). For large values ofβ, as the grid approaches the limit of equidistant spacing, the
two numerical results converge to an asymptotic limit. This limit is close to the leading term
of the truncation error of Eq. (35), plotted as a straight line near the bottom of the graph.
For smaller values ofβ, as the grid points become clustered near the wall, the accuracy of
both numerical derivatives improves. However, while the error of Eq. (33) goes to zero as
desired, the error of Eq. (37) does not. Rather, it oscillates about zero without reaching the
proper limit.

To gain higher accuracy at the wall, one could also use a one-sided compact-difference
approximation, such as

qrdy1 f ′1+ qrdy2 f ′2+ qrdy3 f ′3+ qrdy4 f ′4 = prdy1 f1+prdy2 f2+prdy3 f3+prdy4 f4, (39)

where

qrdy1 = 1 (40a)

qrdy2 =
h2

2h2
3

(h2− h1)2(h3− h1)2
(40b)
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qrdy3 =
h2

1h2
3

(h2− h1)2(h3− h2)2
(40c)

qrdy4 =
h2

1h2
2

(h3− h1)2(h3− h2)2
(40d)

prdy1 = −
2(h2h3+ h1h3+ h1h2)

h1h2h3
(40e)

prdy2 =
2h2

2h2
3

(
h2h3− 2h1h3− 2h1h2+ 3h2

1

)
h1(h2− h1)3(h3− h1)3

(40f)

prdy3 =
2h2

1h2
3

(
2h2h3− h1h3− 3h2

2+ 2h1h2
)

h2(h2− h1)3(h3− h2)3
(40g)

prdy4 =
2h2

1h2
2

(
3h2

3− 2h2h3− 2h1h3+ h1h2
)

h3(h3− h1)3(h3− h2)3
(40h)

andh j = yj+1− y1.
In the limiting caseyj+1− yj =1y= const., Eq. (39) reduces to

(3 f ′1 + 27 f ′2 + 27 f ′3 + 3 f ′4)

= 1

1y
(−11 f1− 27 f2+ 27 f3+ 11 f4)

[
+ 3

140

∂7 f

∂y7
(1y)6+ · · ·

]
. (41)

In this case, the derivatives at the pointsj = 2, 3, 4 are known; thus, the derivative atj = 1
can be computed in a straightforward manner without solving a system of equations. The
use of a coordinate transformation together with the equidistant formula (41) requires some
care. The derivatives atj = 1, 2, 3, 4 must be scaled by the values of the transformation
metric at these points, i.e.,(

3
dη

dy

∣∣∣∣
1

f ′1 + 27
dη

dy

∣∣∣∣
2

f ′2 + 27
dη

dy

∣∣∣∣
3

f ′3 + 3
dη

dy

∣∣∣∣
4

f ′4

)
= 1

1η
(−11 f1− 27 f2+ 27 f3+ 11 f4). (42)

The leading term of the truncation error of Eq. (41) contains an odd derivative. Thus, to
allow for a comparison of the numerical results with this term, the function used here is

f (y) = sin

(
10

y

ymax

)
. (43)

The results of the compact-difference derivatives are plotted in Fig. 8. While the overall
accuracy is two orders of magnitude better than that of the standard one-sided derivatives
described above, the qualitative trend is the same. For large values ofβ, the error approaches
the leading term of the truncation error for an equidistant grid. For small values ofβ, the
error of Eq. (39) approaches zero, while the error of Eq. (42) does not.

These results confirm that, for higher-order differences, it is preferable to derive a finite-
difference formula specifically for a stretched grid, rather than to use a coordinate transfor-
mation combined with an equidistant grid in computational space.

A full listing of all finite-difference approximations used is beyond the scope of this
paper. The interested reader is referred to the listing given in [19].
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FIG. 8. Error of the numerical derivatived/dy of f = sin(10y/ymax) at the wally= 0 with compact differ-
ences, plotted vs stretching parameterβ. Calculation with 80 grid points.(+) d f/dy finite-difference derived for
stretched grid;(e) d f/dy coordinate transformation with finite difference for equidistant grid; (—) leading term
of truncation error for equidistant grid.

3.4. Solution of the Velocity Poisson Equations

After the calculation of the vorticity, the normal velocityVk is computed. At the outflow
boundary, the second derivative inx on the left-hand side of Eq. (10a) is dropped, leaving an
ordinary differential equation forVk. This equation is discretized with compact differences
in y. After solving forVk at i =m1, these values are then used as a boundary condition for
the solution inside the integration domain. To solve for the velocity inside the integration
domain, Eq. (10a) is discretized with compact differences inx. Following Swarztrauber
[27, 28], a Fourier sine transform is applied inx. This yields a set of ordinary differential
equations iny for each Fourier sine component inx. These equations are then discretized
with compact differences iny.

The Poisson equations (10b) forWk and (10c) forUk are also discretized with compact
differences inx.

3.5. Calculation of the Wall Vorticity

For the calculation of the vorticity at the wall (Eqs. (12a) and (12c)), the Laplacian ofVk

and the mixed derivative∂2Äyk/∂x∂y are needed at the wall.
The Laplacian∇2

k Vk at the wall can be computed from the Poisson equation for theVk.
At this stage in the calculation,Vk is known everywhere, and∇2

k Vk≡ γkÄxk− ∂Äzk/∂x
is known on the grid pointsj = 2, 3, 4. Thus, Eq. (10a) can be turned around to solve for
∇2

k Vk at the wall.
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SinceÄyk is zero at the wall, it would be straightforward to compute the derivative
∂Äyk/∂y with one-sided differences, e.g., with Eq. (33). However, by using the compact
differences (39), one can achieve substantially higher accuracy and also ensure a divergence-
free vorticity vector at the wall. Taking they-derivative of the divergence of the vorticity
yields

∂2Äyk

∂x∂y
= −∂

2Äxk

∂x2
+ γk

∂Äzk

∂x
. (44)

Thus,∂2Äyk/∂x∂y can be computed on the grid pointsj = 2, 3, 4 with very high accuracy.
Once the derivatives at these points are known, Eq. (39) can be used to solve for the derivative
at the wall.

When∂2Äyk/∂x∂y and∇2
k Vk at the wall have been calculated,Äxk can be computed by

solving Eq. (12a). Finally,Äzk is computed by numerical integration of Eq. (12c), starting
at the inflow boundary and marching downstream.

3.6. Damping of Disturbances Near the Outflow Boundary

The buffer domain technique is a very effective method for avoiding reflections of distur-
bance waves at the outflow boundary [15, 26]. Betweenx= xB andx= xmax, the disturbance
vorticity is gradually ramped down to zero using

f (ξ) = c(ξ) fT (ξ), (45)

where

ξ = x − xmax

xB − xmax
. (46)

Here fT (ξ) is the vorticity as computed from the vorticity transport equation, before damp-
ing, f (ξ) is the vorticity after damping, andc(ξ) is a weighting function that varies smoothly
from c= 1 at ξ = 0 to c= 0 at ξ = 1. The length of the buffer domain isl B= xmax− xB.
Kloker et al. [15] used a fifth-order polynomial for the weighting functionc(ξ) to ensure
smooth first and second derivatives at the beginning and end of the damping,

c(ξ) = 1− 6ξ5+ 15ξ4− 10ξ3. (47)

This function is antisymmetric w.r.t. the midpoint of the buffer domain, i.e.,

c(1/2+ s) = 1− c(1/2− s), 0< s< 1/2 (48)

During the course of the calculation, this damping is performed at every stage of the Runge–
Kutta time integration. The effect of applying this damping functionn times can be written
as

f (x) = cn(x) fT (x). (49)

In Fig. 9, the functioncn(ξ) is plotted vsξ , for n= 1, n= 50, n= 100, andn= 150. While
c(ξ) varies smoothly between 1 and 0, repeated application of the damping causes a rapid
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FIG. 9. Effect of applying the polynomial damping functionc(ξ)= 1− 6ξ 5+ 15ξ 4− 10ξ 3 n times:(e)n= 1;
(+) n= 50; (u) n = 100; (×) n= 150.

drop at the beginning of the damping domain, as can be seen from the curves for largern. This
is clearly undesired, as such a sudden jump in the vorticity might act just like a boundary,
causing reflections of waves. Sincef (ξ) in Eq. (45) consists of traveling waves, the dropoff
due to repeated damping should be counterbalanced by the downstream propagation of
these waves. In practice, the phase speed of waves in a boundary layer is on the order of one
third of the free-stream speed. With a typical CFL number of 0.5, a wave travels one spatial
step1x in six time steps1t . Thus, with the four-stage Runge–Kutta scheme, the damping
function is applied 24 times for every step1x a wave advances. The buffer domain extends
typically over two wavelengths, e.g.,l B= 401x for a wavelengthλ= 201x. After one
half period of 301t , the wave has propagated 101x downstream into the buffer domain.
After the damping has been appliedn= 120 times, the wave has propagated a distance of
ξ = 0.25. As seen from Fig. 9, this distance is not enough to counter the severe attenuation
caused by the damping. Indeed, the figures in [15] show a very rapid change of the flow
within the first few grid points of the buffer domain.

In some simulations of low-frequency free-stream vortices [20], the buffer domain tech-
nique with the damping function discussed above did not work. Waves were reflected from
the junction at the upstream end of the buffer domain and destroyed the results inside
the computational domain. Therefore, a new damping function was devised that took the
convective nature of the flow into account:

c(ξ) = e−ξ
4/10(1− ξ50)4. (50)

The constants in Eq. (50) were found through numerical experiments. The new damping
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FIG. 10. Effect of applying the exponential damping functionc(ξ)= exp(−x4/10)(1− x50)4 n times:
(e) n= 1; (+) n= 50; (u) n = 100;(×) n= 150.

function is plotted in Fig. 10, again forn= 1, n= 50, n= 100, andn= 150. While there is
a steep dropoff near the end forn= 1, the curves for higher values ofn are much smoother
than in the previous figure. This damping function has performed very well in calculations
of many different unsteady flows.

However, one purpose of the present code is the calculation of three-dimensional steady
flows to be used as base flows for subsequent unsteady calculations. For such flows, the
normal buffer domain technique of ramping down the disturbance to zero near the outflow
boundary may not be adequate, due to the elliptic nature of the steady flow. A solution to
this problem is to use a weighted average of fourth-order compact differences and first-
order upwind differences near the outflow boundary betweenx= xB andx= xmax when
calculating thex-derivatives of the nonlinear terms in the vorticity-transport equations (9b),
(9c),

∂ f

∂x
= c(ξ)

∂ f (ξ)

∂x compact
+ (1− c(ξ))

∂ f (ξ)

∂x upwind
, (51)

where f = Ak,Ck, and the compact differences are calculated according to the method
given in Section 3.2. The weighting functionc(ξ) used here is the same as used for
the direct damping of the vorticity. This technique has worked exceedingly well even
for very strong streamwise vortices [18], and it has no adverse effects on the flow up-
stream of the buffer domain. Hence, we have retained it in our code for all cal-
culations.
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3.7. Filtering of the Vorticity in Streamwise Direction

The numerical integration of Eq. (12c) along the wall introduces grid-mesh oscillation in
x. When the streamwise derivatives of the nonlinear terms of the vorticity transport equations
are computed by the split-compact differences (15) and (16), any grid-mesh oscillations are
sufficiently damped. On the other hand, when the streamwise derivatives of the nonlinear
terms are computed with central compact differences, those grid-mesh oscillations may
grow and cause trouble. To suppress them, the vorticity components are filtered at each
stage of the Runge–Kutta time integration. The filter used here is a five-point compact
difference filter proposed by Lele [16, equations (C.2.1) and (C.2.10.b)].

3.8. Time Integration

In our code, two different methods can be used for the time integration of the vorticity-
transport equations (9a)–(9c). The first is a four-stage explicit Runge–Kutta scheme which
is very accurate, up to orderO((1t)4). The second combines a three-stage explicit Runge–
Kutta scheme with a semi-implicit Crank–Nicolson scheme for better numerical stability.
This second scheme is accurate of orderO((1t)2).

Four-stage explicit Runge–Kutta method.This method is based on the classical fourth-
order Runge–Kutta method. However, the weighting of the intermediate stages in the final
corrector step can be adjusted to increase the numerical stability of the scheme, in return
for reducing its accuracy. The four stages of the integration over one timestep are

fi = f0+ 1t

2
f ′0 (52a)

fii = f0+ 1t

2
f ′i (52b)

fiii = f0+1t f ′ii (52c)

f = fiv = f0+ 1t

6
(aRK f ′0 + bRK f ′i + cRK f ′ii + dRK f ′iii ), (52d)

where f denotes any vorticity component,1t is the time step,f ′ is the right-hand side of
the vorticity–transport equations, and the subscript 0 denotes the previous timestep. The
weighting coefficients of the final corrector stage are given in Table I. A key feature of this
family of Runge–Kutta integrators is the fact that all share the same intermediate steps. This
allows us to use different orders for different terms of the same partial differential equation
while maintaining consistency of the boundary conditions and of the nonlinear terms.

TABLE I

Coefficients of the Final Corrector Stage

for the Explicit Runge–Kutta Scheme

Order aRK bRK cRK dRK

(1t) 3.60897 2.04000 0.34206 0.00897
(1t)2 0.11 3.92 1.86 0.11
(1t)3 0.65 2.70 2.00 0.65
(1t)4 1 2 2 1
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As an explicit method, this scheme is only conditionally stable. Many calculations of
boundary layer flows require a very fine grid spacing iny near the wall. In these cases,
the major stability restriction for the time step is due to the wall-normal diffusion terms
1/Re∂2/∂y2(Äxk, Äyk, Äzk) of the vorticity–transport equations. For a numerical stability
analysis, these terms can be modeled by the ordinary differential equation

d f

dt
= −ρ f, (53)

whereρ is the largest eigenvalue of the finite-difference operator. For this model equa-
tion, the stability of a given numerical scheme depends only on the productρ1t . For
the diffusion operator,ρ is dominated by its real part. Therefore, the fourth-stage cor-
rector can be modified to allow for a larger real part of the eigenvalues, in return for
reduced formal accuracy. In Fig. 2 the amplificationf (t +1t)/ f (t), obtained with the co-
efficients from Table I, after one timestep is plotted vs the productρ1t , for realρ ≥ 0.
The method is stable if| f (t +1t)/ f (t)|< 1. These curves show that the lower-order
schemes are much more stable than the fourth-order scheme. In practice, the second-
order scheme is sufficiently accurate, while allowing for a timestep that is much larger
than that allowed by the standard fourth-order scheme. The first-order scheme is useful
for the calculation of steady flows, but is too dissipative for genuinely unsteady calcu-
lations. Hence, the wall-normal diffusion terms, which are most critical for stability, are
integrated with the second-order scheme. All other terms are integrated with the fourth-order
scheme.

At each Runge–Kutta stage, the calculation proceeds as follows:

1. Compute the right-hand side of the vorticity–transport equations (9a)–(9c). Split-
compact differences with biasing are used to compute the streamwise derivatives
∂Ak/∂x and∂Ck/∂x.

2. Integrate the vorticity-transport equations over one substep, according to Eqs. (52a)–
(52d).

3. If desired, taper the disturbance vorticity to zero near the outflow boundary.
4. If desired, filter the vorticity in the streamwise direction.
5. Solve the velocity–Poisson equations (10a)–(10c).
6. Solve Eqs. (12a) and (12c) to obtain the vorticity componentsÄxk, Äzk at the wall.

Three-stage Runge–Kutta/Crank–Nicolson method.For some calculations, the explicit
schemes described above are still too restrictive; i.e., the maximum timestep allowed for
numerical stability is much smaller than the time step necessary for numerical accuracy.
In these cases, an implicit time integration scheme would be preferable, at least for the
diffusion terms in they direction. This raises the problem of boundary conditions: The
implicit time integration of the wall-normal diffusion terms 1/Re∂2/∂y2(Äxk, Äyk, Äzk)

requires the specification of the vorticity at the wall, which is not known before the solution
of the velocity–Poisson equations. This issue appears to be a major drawback of any vorticity
formulation of the Navier–Stokes equations.

One way to deal with wall boundary conditions for an implicit scheme is to use an
influence matrix method, similar to those proposed for the primitive variable fractional
step method [14, 21]. This is equivalent to the numerical calculation of a Green’s function.
Unfortunately, the memory requirements of such an approach are very high.



394 MEITZ AND FASEL

An alternative approach is to iterate between the vorticity–transport equations and the
elliptic equations (normal velocity and wall vorticity) until the vorticity at the wall has con-
verged. This approach has been applied to the two-dimensional vorticity transport equations
by Fasel, although in the context of a completely implicit scheme. In the present work, the
implicit Crank–Nicolson scheme is used for the time integration of they-diffusion terms
only. All other terms of the vorticity–transport equations are integrated with an explicit
three-stage Runge–Kutta scheme. The vorticity at the wall is computed by an iteration be-
tween the implicit part of the vorticity–transport equations and the Poisson equation for the
normal velocityVk. It is important to note that the iteration of the implicit wall-boundary
conditions here is only necessary to improve the numerical stability of the scheme and
does not affect the accuracy. This is in contrast to the fractional step method in primitive
variables, where the problem of wall boundary conditions is a lack of accuracy and not of
numerical stability.

The three stages of the Runge–Kutta scheme are

fi = f0+1t f ′0 (54a)

fii = f0+1t f ′i (54b)

fiii = f0+ 1t

2
( f ′0 + f ′ii ). (54c)

The equations for the Crank–Nicolson scheme at a grid point away from the boundaries
are (

1t

2 Re
ard2y − afd2y

)
f n

∣∣∣∣
j−1

+
(
1t

2 Re
brd2y − bfd2y

)
fn

∣∣∣∣
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+
(
1t

2 Re
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)
fn

∣∣∣∣
j+1

= −
(
1t

2 Re
ard2y + afd2y

)
f0
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j−1

−
(
1t

2 Re
brd2y + bfd2y

)
f0

∣∣∣∣
j

−
(
1t

2 Re
crd2y + cfd2y

)
f0

∣∣∣∣
j+1

−1t (afd2yrhsn−1| j−1

+ bfd2yrhsn−1| j + cfd2yrhsn−1| j+1), (55)

where f denotes any vorticity component,j is the grid index in they direction,1t is the
time step, Re is the Reynolds number, and rhs, is the explicit part of the vorticity transport
equation without they diffusion terms. The subscriptn refers to the stagei, ii, iii of the
Runge–Kutta scheme, and the subscript 0 denotes the previous timestep. The coefficients
ard2y, brd2y, crd2y, afd2y, bfd2y, cfd2y at the gridpointj are given by Eqs. (31a) and (31b)
in Section 3.3.

At each stage of the Runge–Kutta scheme (54a)–(54c), the calculation proceeds as fol-
lows:

1. Compute the explicit right-hand side terms rhs of the vorticity–transport equa-
tions (9a)–(9c), excluding the wall-normal diffusion terms 1/Re∂2/∂y2(Äxk, Äyk,

Äzk). Here, central compact differences (without biasing) are used for the stream-
wise derivatives∂Ak/∂x and∂Ck/∂x.
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2. Compute the explicit wall-normal diffusion termsωyy= 1/Re∂2/∂y2(Äxk,

Äyk, Äzk) (cf. Eq. (30)).
3. Using the explicit right-hand sidef ′ = rhs+ωyy, advance the vorticity in time, ac-

cording to Eqs. (54a)–(54c). These vorticity values are used to start the iteration in
step 4.

4. Compute the wall-normal diffusion terms implicitly with the Crank–Nicolson
scheme. The following iteration is used to compute the vorticity at the wall:

(a) Using the previous vorticity values inside the domain, solve theVk–Poisson
equation (10a).

(b) Solve Eqs. (12a) and (12c) to obtain the vorticity componentsÄxk, Äzk at the
wall.

(c) Using the wall vorticity values (after underrelaxation, see below) as boundary
conditions, calculate the new vorticity values inside, using Eq. (55).

5. If desired, taper the disturbance vorticity to zero near the outflow boundary.
6. If desired, filter the vorticity in the streamwise direction.
7. Solve the velocity–Poisson equations (10a)–(10c).
8. Solve Eqs. (12a) and (12c) to obtain the vorticity componentsÄxk, Äzk at the wall.

For the iteration of the Crank–Nicolson scheme to converge, an underrelaxation must be
used to update the vorticity. The vorticity valuesfn| j used in step 4c above are relaxed as

fn

∣∣∣∣
1

= l − 1

lmax− 1
fn,l

∣∣∣∣
1

+ lmax− l

lmax− 1
fn,l−1

∣∣∣∣
1

(56a)

fn

∣∣∣∣
j

= 1

2
fn,l

∣∣∣∣
j

+ 1

2
fn,l−1
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j

, (56b)

where j is the wall-normal grid point index,n is the stage of the Runge–Kutta scheme,l
is the iteration level, andlmax is the total number of iterations. Note the gradual change of
the relaxation factor for the wall vorticity in Eq. (56a). Of the many different relaxation
schemes tested, this scheme proved to be the fastest and most robust one. In practice, six
iterations are sufficient for convergence.

4. CODE VALIDATION

In this section, we present the results of several numerical calculations that demonstrate
the accuracy and convergence of the numerical scheme. The best way to assess the accuracy
of a numerical method is to compute a flow for which there is a known exact solution. By
comparing the error from calculations for different stepsizes, one can calculate the formal
accuracy of the overall method, as opposed to the formal accuracy of individual finite-
difference approximation of different terms in the equations. Suppose the numerical error
is dominated by the leading term of the truncation error of a Taylor series, i.e.,

ε = fnumerical− fexact= cm−p ≡ c1p, (57)

wherec is a constant,m is the number of steps1, andp is the accuracy of the numerical
scheme inx, y, or t , respectively. Using Eq. (57) for two numerical solutions with different
resolutions,m1 andm2, yields the accuracyp as

p = log(ε1/ε2)

log(m2/m1)
. (58)
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Unfortunately, there are not many exact solutions of the Navier–Stokes equations suitable
for such an accuracy analysis of the present code. However, even without an exact solution,
it is still possible to estimate the convergence rate of the numerical scheme from Eq. (57).
In this case, we require three numerical solutionsf0, f1, and f2 with different resolutions
m0,m1, andm2 to obtain an equation forp,

( f1− f0)
(
(m0/m2)

p − 1
) = ( f2− f0)

(
(m0/m1)

p − 1
)
. (59)

This equation must be solved numerically. In practice,p is usually a nonintegral number,
and the formal accuracy is considered to be its integral part. Oncep (andc) are known, one
can use Richardson extrapolation to obtain an estimate for the truncation errorc1p and for
the asymptotic solution as1→ 0.

4.1. Asymptotic Suction Flow

One exact solution suitable for a validation of our numerical method is the asymptotic
solution of a flow over a flat plate with zero pressure gradient and with uniform wall suction
vs< 0. In the present nondimensional variables, this solution of the Navier–Stokes equation
is

u(y) = 1− evs Re y (60a)

v = vs (60b)

ωz = −vs Reevs Re y. (60c)

This flow is of particular relevance, because the study of wall suction in laminar flow con-
trol is an important application for our Navier–Stokes code. To determine the accuracy of
the numerical method, we compared the values of the wall vorticity from the two different
calculations to the exact solution and used Eq. (58) to compute the convergence rate. The
computational parameters used in the calculations and the results are given in Table II.
These results show that the overall code is indeed fourth-order accurate in they direction,
even on a highly stretched grid.

4.2. Tollmien–Schlichting Waves

In this test, the Navier–Stokes code was used to compute the propagation and amplification
of TS-waves in a Blasius boundary layer. At the inflow boundary, time-harmonic boundary

TABLE II

Computational Parameters and Results

for Asymptotic Suction Flow

Reynolds number Re= 105

Suction velocity vs=−2× 10−3

Wall vorticity ωz(y= 0)= 200 (exact solution)
Free-stream boundary ymax= 0.15
Grid stretching parameter β = 1.02

Number ofy-gridpoints my,1= 40 (case 1)
my,2= 80 (case 2)

Numerical error ε1=−1.589354× 10−2 (case 1)
ε2=−0.093644× 10−2 (case 2)

Convergence rate p= 4.1
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TABLE III

Computational Parameters Used in All TS-Wave Calculations

Inflow location x0= 1.6
Begin of buffer domain xB= 5.7
Reynolds number Re= 105

Free-stream boundary ymax= 0.15
Grid stretching parameter β = 1.02
Number ofy gridpoints my= 80
Number of spanwise Fourier modes K = 2
Fundamental spanwise wavenumber γ1= 30
Frequency of the TS-waves F = 2π f ν/U 2

∞ × 104= 1
Inflow amplitudes of the TS-waves û2−D = 0.364529× 10−4 (2-D wave)

û3−D = 0.871989× 10−4 (3-D wave,γ = 30)

conditions were specified that corresponded to a superposition of one plane (2-D) TS-wave
and one oblique (3-D) TS-wave. The computational parameters common to all TS-wave
calculations presented here are given in Table III. All spatial dimensions are scaled by
the reference lengthL = 0.1 M, and all velocities are scaled by the free-stream velocity
U∞= 15 m/s. With these flow parameters, both TS-waves are initially damped after they
enter the integration domain. They subsequently pass through both branches of the neutral
stability curve and are damped again before they reach the buffer domain. Their amplitudes
(maxima ofû over y at eachx-location) are plotted in Fig. 11. The wavelength of the 2-D
TS-wave near the maximum amplitude is aboutλTS≈ 0.22.

With this basic configuration, several calculations were performed, using different step
sizes1x and1t , different time integration schemes, different biasing factors in the split-
compact differences for the nonlinear terms, and different buffer domains lengthslb and
weighting functions. The grid spacing in they direction was not changed in this test. The
parameters of these different calculations are listed in Table IV. In this table, exp refers to the
exponential damping function in Eq. (50), poly refers to the polynomial damping function in
Eq. (47), RKCN denotes the three-stage Runge–Kutta/Crank–Nicolson method, and RK4-2
denotes the four-stage Runge–Kutta method with second-order accuracy for they diffusion
terms.

An issue of considerable importance is the measure of the error in these calculations. Tra-
ditionally, in linear stability theory as applied to TS-waves, the amplification rateαI has been
used to compare different prediction methods. However,αI is only a local measure of am-
plitude growth and does not provide information about the global development of the waves,
and hence about the total error. In this study, we have chosen to use the maximumu amplitude
attained by the TS-waves as the quantity for comparison. This measure includes both the
error due to the numerical treatment of the inflow boundary and the cumulative error from
the propagation of the waves over 7 (3-D) and 16 (2-D) wavelengths, respectively. Hence,
it is a better measure of the global error than, say, the maximum value of the growth rate.

The numerical results are given in Table V. In addition to the results from the individual
calculations, we also include the results obtained by using Richardson extrapolation for
1x,1t→ 0. These results are labeled “extrap.” The formal accuracy of the scheme in the
x direction was computed from the amplitudes of test cases X1 and X2. In spite of using
formally fourth-order accurate difference approximations for allx-derivatives, the over-
all code is only third-order accurate in1x. This is due to the fact that the right-hand sides
of the velocity equations (10a)–(10c) and of the wall vorticity equations (12a), (12c) contain
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TABLE IV

Computational Parameters for Different TS-Wave Calculations

Case 1x/1x0 wc lb c(ξ) 1t/1t0 Time integration

REF 1 1.0 0.95 exp 1 RKCN

X1 2 1.0 0.95 exp 1 RKCN
X2 3 1.0 0.95 exp 1 RKCN

T1 1 1.0 0.95 exp 4/3 RKCN
T2 1 1.0 0.95 exp 2 RKCN

SI 3 1.0 0.95 exp 1/2 RKCN
SC 3 1.0 0.95 exp 1/2 RK4-2
SM 3 0.5 0.95 exp 1/2 RK4-2
SS 3 0.0 0.95 exp 1/2 RK4-2

E35 1 1.0 0.35 exp 1 RKCN
E25 1 1.0 0.25 exp 1 RKCN
E15 1 1.0 0.15 exp 1 RKCN

P35 1 1.0 0.35 poly 1 RKCN
P25 1 1.0 0.25 poly 1 RKCN
P15 1 1.0 0.15 poly 1 RKCN

Note.1x0= 0.01 (approx. 22 points/wavelength);1t0= 3.927× 10−3 (160 timesteps/period).

FIG. 11. u-amplitudes of 2-D (u) and 3-D (e) TS-waves.
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TABLE V

Results of Different TS-Wave Calculations

umax,2−D umax,3−D CPU
Case (×10−4) p2−D (×10−4) p3−D (×10−6 s)

REF 1.96657 0.99517 49

X1 2.08851 3.3 1.01854 3.8 39
X2 2.47288 1.11131 37

T1 1.96037 2.4 0.99351 2.4 49
T2 1.93995 0.98805 49

extrap 1.9756 0.9950

SI 2.49878 1.13006 37
SC 2.49995 1.13026 26
SM 2.29489 1.09104 26
SS 1.83418 0.99344 26

Note.CPU time inµs/gridpoint/timestep.

x-derivatives of the vorticity, which reduces the overall accuracy by one order. The results of
test cases T1 and T2 show that the semi-implicit three-stage Runge–Kutta/Crank–Nicolson
method is indeed second-order accurate in1t . The convergence tests for1x and1t were
performed with central differences for the nonlinear terms, without splitting (i.e., wc= 1).
These tests show that lower resolution int results in an underprediction of the disturbance
growth, while lower resoltution inx tends to overpredict it.

The effect of splitting was investigated in test cases SC, SM, and SS. Since the effects of
the splitting are most pronounced for poorly resolved waves, we have selected a resolution
of approximately 7 points per wavelength for these three cases. One would not use such a
poor resolution for a practical TS-wave calculation. However, in a large-eddy simulation
of the later stages of transition and early turbulence, large-scale structures might well
contain considerable energy at such short wavelengths. Thus, this test is indicative of the
improvements that can be expected from the split differences for such calculations.

In these three test cases, the explicit four-stage Runge–Kutta method was used for time
integration, with second-order accurate integration of the y diffusion terms. Since this
method is less stable than the combined Runge–Kutta/Crank–Nicolson method, the timestep
had to be reduced relative to the reference case. Thus, for comparison, the calculation SI
was performed with the combined Runge–Kutta/Crank–Nicolson and with the reduced
timestep. We note that the amplitudes in case SI, with reduced1t , are increased relative to
the case X2. This agrees with the previous observation that lower resolution int results in
an underprediction of the amplitude; this effect is apparently more pronounced when the
x-resolution is low. Table V shows that the change due to the smaller timestep is an order
of magnitude smaller than the change due to the different splitting factors wc. The effect of
the splitting is indeed profound. In both cases SM and SS, the amplitude error is reduced
by about 50%, for both the 2-D wave and the 3-D wave. Note also that the error changes
sign as we go from wc= 0.5 (SM) to wc= 0 (SS); thus, careful tuning of the splitting might
lead to even further accuracy improvements.

The last column in Table V lists the CPU time (inµs/gridpoint/timestep) used for the
individual calculations. These times were obtained with the code running on a single
90-MHz R8000 processor on an SGI Power challenge. A comparison between the cases SI
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and SC shows that the semi-implicit Runge–Kutta/Crank–Nicolson method RKCN requires
about 50% more CPU time per timestep than the explicit four-stage Runge–Kutta method
RK4-2. This is the penalty for the extra computational effort of the iteration. However, for
the computational grid used in this study, RKCN is much more stable than RK4-2. The
stability limit for RKCN is about 80 timesteps per period of the TS-waves, while RK4-2
needs about 240 timesteps per period. Thus, if we use the maximum timestep allowed by
numerical stability, RKCN needs about half the CPU time of RK4-2, a considerable savings.
Also, note that the results with 80 timesteps per period (case T2) are within 2% of the result
estimated by Richardson extrapolation. Such accuracy is probably more than sufficient in
most cases.

Finally, we investigated the effect of different damping functions and buffer domain
lengthsl B relative to the TS-wavelengthλTS. Figure 12 shows theu-amplitudeû of the 2-D
TS-wave for seven different buffer domain parameters: The reference case was computed
with a very long buffer domain(l B≈ 4λTS), using the exponential weighting function (50). In
cases E15, E25, and E35 the exponential weighting function was used with a buffer domain

FIG. 12. Effect of different buffer domain lengthsl B and damping functionsc(ξ ) on the amplitude of the 2-D
TS-wave. Damping begins atxB= 5.7. The curves are reference case withl B= 0.95 (---); polynomial damping
with l B= 0.35(u), l B= 0.25(e), andl B= 0.15(,); and exponential damping withl B= 0.35(j), l B= 0.25(r),
andl B= 0.15(.).
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FIG. 13. Difference between calculations with short buffer domains and reference case. The curves are
polynomial damping withl B= 0.35(u), l B= 0.25(e), andl B= 0.15(,); and exponential damping withl B=
0.35(j), l B= 0.25(r) andl B= 0.15(.).

length of 0.15, 0.25, and 0.35, respectively. In cases P15, P25, and P35 the polynomial
damping function (47) was used, again with a buffer domain length of 0.15, 0.25, and 0.35,
respectively. The differencêu− ûref between the different E and P cases and the reference
case is plotted in Fig. 13. These curves clearly show the dramatic improvement due to
the exponential damping function. Even with a buffer length that is substantially smaller
than the TS-wavelength (case E15), upstream effects on the amplitude are no larger than
1% of the maximum amplitude, and they decay rapidly forx< xB. On the other hand, the
polynomial damping function causes distortions that extend up to one wavelength upstream
of the buffer domain. Thus, the exponential damping allows for a reduction in the length of
the buffer domain of up to two wavelengths. For turbulence simulations that include only a
few wavelengths in streamwise direction, this can amount to a substantial reduction in the
computational effort.

5. CONCLUSIONS

We have presented a new numerical method for solving the incompressible, unsteady
Navier–Stokes equations in vorticity–velocity formulation. The method is highly suited for
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simulations of transition and turbulence in wall-bounded shear flows. It combines several
new numerical techniques that were discussed in detail. The discretization of the convective
terms with split-compact differences and the use of nonequidistant compact differences in
the wall-normal direction considerably improved the overall accuracy of the numerical
scheme. A new exponential damping function leads to a more efficient implementation of
the buffer domain technique to prevent reflections of waves at the outflow boundary. A
new iteration scheme for the calculation of the wall vorticity allowed for a semi-implicit
time integration of the wall-normal diffusion terms. This resulted in substantially increased
numerical stability of the scheme.

It should be emphasized that these new techniques are not restricted to the Navier–Stokes
equations in vorticity–transport form. The split-compact differences and the improved buffer
domain technique are well suited for wave propagation problems in many areas of mathe-
matical physics. The nonequidistant compact differences provide substantial improvement
over conventional high-order finite differences for problems with boundary layer charac-
teristics that require highly stretched grids.

The numerical code has been used in direct numerical simulations of laminar flow control
and transition in boundary layers [18, 20] and wall jets [30]. With the addition of an eddy
viscosity to model the subgrid scale Reynolds stresses, it has been used to carry out large-
eddy simulations of boundary layers and wall jets [2]. It has recently been extended to
non-Cartesian coordinates for flows over curved surfaces [31].
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